
CHAPTER 1

Introduction

Machine learning is about extracting knowledge from data. It is a research field at the
intersection of statistics, artificial intelligence and computer science, which is also
known as predictive analytics or statistical learning. The application of machine
learning methods has in recent years become ubiquitous in everyday life. From auto‐
matic recommendations of which movies to watch, to what food to order or which
products to buy, to personalized online radio and recognizing your friends in your
photos, many modern websites and devices have machine learning algorithms at their
core.

When you look at at complex websites like Facebook, Amazon or Netflix, it is very
likely that every part of the website you are looking at contains multiple machine
learning models.

Outside of commercial applications, machine learning has had a tremendous influ‐
ence on the way data driven research is done today. The tools introduced in this book
have been applied to diverse scientific questions such as understanding stars, finding
distant planets, analyzing DNA sequences, and providing personalized cancer treat‐
ments.

Your application doesn’t need to be as large-scale or world-changing as these exam‐
ples in order to benefit from machine learning. In this chapter, we will explain why
machine learning became so popular, and dicuss what kind of problem can be solved
using machine learning. Then, we will show you how to build your first machine
learning model, introducing important concepts on the way.

Why machine learning?
In the early days of “intelligent” applications, many systems used hand-coded rules of
“if ” and “else” decisions to process data or adjust to user input. Think of a spam filter

9

whose job is to move an email to a spam folder. You could make up a black-list of
words that would result in an email marked as spam. This would be an example of
using an expert designed rule system to design an “intelligent” application. Designing
kind of manual design of decision rules is feasible for some applications, in particular
for those applications in which humans have a good understanding of how a decision
should be made. However, using hand-coded rules to make decisions has two major
disadvantages:

1. The logic required to make a decision is specific to a single domain and task.
Changing the task even slightly might require a rewrite of the whole system.

2. Designing rules requires a deep understanding of how a decision should be made
by a human expert.

One example of where this hand-coded approach will fail is in detecting faces in
images. Today every smart phone can detect a face in an image. However, face detec‐
tion was an unsolved problem until as recent as 2001. The main problem is that the
way in which pixels (which make up an image in a computer) are “perceived by” the
computer is very different from how humans perceive a face. This difference in repre‐
sentation makes it basically impossible for a human to come up with a good set of
rules to describe what constitutes a face in a digital image.

Using machine learning, however, simply presenting a program with a large collec‐
tion of images of faces is enough for an algorithm to determine what characteristics
are needed to identify a face.

Problems that machine learning can solve
The most successful kind of machine learning algorithms are those that automate a
decision making processes by generalizing from known examples. In this setting,
which is known as a supervised learning setting, the user provides the algorithm with
pairs of inputs and desired outputs, and the algorithm finds a way to produce the
desired output given an input.

In particular, the algorithm is able to create an output for an input it has never seen
before without any help from a human.

Going back to our example of spam classification, using machine learning, the user
provides the algorithm a large number of emails (which are the input), together with
the information about whether any of these emails are spam (which is the desired
output). Given a new email, the algorithm will then produce a prediction as to
whether or not the new email is spam.

Machine learning algorithms that learn from input-output pairs are called supervised
learning algorithms because a “teacher” provides supervision to the algorithm in the
form of the desired outputs for each example that they learn from.

10 | Chapter 1: Introduction

While creating a dataset of inputs and outputs is often a laborious manual process,
supervised learning algorithms are well-understood and their performance is easy to
measure. If your application can be formulated as a supervised learning problem, and
you are able to create a dataset that includes the desired outcome, machine learning
will likely be able to solve your problem.

Examples of supervised machine learning tasks include:

• Identifying the ZIP code from handwritten digits on an envelope. Here the
input is a scan of the handwriting, and the desired output is the actual digits in
the zip code. To create a data set for building a machine learning model, you need
to collect many envelopes. Then you can read the zip codes yourself and store the
digits as your desired outcomes.

• Determining whether or not a tumor is benign based on a medical image.
Here the input is the image, and the output is whether or not the tumor is
benign. To create a data set for building a model, you need a database of medical
images. You also need an expert opinion, so a doctor needs to look at all of the
images and decide which tumors are benign and which are not.

• Detecting fraudulent activity in credit card transactions. Here the input is a
record of the credit card transaction, and the output is whether it is likely to be
fraudulent or not. Assuming that you are the entity distributing the credit cards,
collecting a dataset means storing all transactions, and recording if a user reports
any transaction as fraudulent.

An interesting thing to note about the three examples above is that although the
inputs and outputs look fairly straight-forward, the data collection process for these
three tasks is vastly different.

While reading envelopes is laborious, it is easy and cheap. Obtaining medical imaging
and expert opinions on the other hand not only requires expensive machinery but
also rare and expensive expert knowledge, not to mention ethical concerns and pri‐
vacy issues. In the example of detecting credit card fraud, data collection is much
simpler. Your customers will provide you with the desired output, as they will report
fraud. All you have to do to obtain the input output pairs of fraudulent and non-
fraudulent activity is wait.

The other type of algorithms that we will cover in this book is unsupervised algo‐
rithms. In unsupervised learning, only the input data is known and there is no known
output data given to the algorithm. While there are many successful applications of
these methods as well, they are usually harder to understand and evaluate.

Examples of unsupervised learning include:

Why machine learning? | 11

• Identifying topics in a set of blog posts. If you have a large collection of text
data, you might want to summarize it and find prevalent themes in it. You might
not know beforehand what these topics are, or how many topics there might be.
Therefore, there are no known outputs.

• Segmenting customers into groups with similar preferences. Given a set of cus‐
tomer records, you might want to identify which customers are similar, and
whether there are groups of customers with similar preferences. For a shopping
site these might be “parents”, “bookworms” or “gamers”. Since you don’t know in
advanced what these groups might be, or even how many there are, you have no
known outputs.

• Detecting abnormal access patterns to a website. To identify abuse or bugs, it is
often helpful to find access patterns that are different from the norm. Each
abnormal pattern might be very different, and you might not have any recorded
instances of abnormal behavior. Since in this example you only observe traffic,
and you don’t know what constitutes normal and abnormal behavior, this is an
unsupervised problem.

For both supervised and unsupervised learning tasks, it is important to have a repre‐
sentation of your input data that a computer can understand. Often it is helpful to
think of your data as a table. Each data point that you want to reason about (each
email, each customer, each transaction) is a row, and each property that describes that
data point (say the age of a customer, the amount or location of a transaction) is a
column.

You might describe users by their age, their gender, when they created an account and
how often they bought from your online shop. You might describe the image of a
tumor by the gray-scale values of each pixel, or maybe by using the size, shape and
color of the tumor to describe it.

Each entity or row here is known as data point or sample in machine learning, while
the columns, the properties that describe these entities, are called features.

We will later go into more detail on the topic of building a good representation of
your data, which is called feature extraction or feature engineering. You should keep
in mind however that no machine learning algorithm will be able to make a predic‐
tion on data for which it has no information. For example, if the only feature that you
have for a patient is their last name, no algorithm will be able to predict their gender.
This information is simply not contained in your data. If you add another feature that
contains their first name, you will have much better luck, as it is often possible to tell
the gender by a person’s first name.

12 | Chapter 1: Introduction

Knowing your data
Quite possibly the most important part in the machine learning process is under‐
standing the data you are working with. It will not be effective to randomly choose an
algorithm and throw your data at it. It is necessary to understand what is going on in
your dataset before you begin building a model. Each algorithm is different in terms
of what data it works best for, what kinds data it can handle, what kind of data it is
optimized for, and so on. Before you start building a model, it is important to know
the answers to most of, if not all of, the following questions:

• How much data do I have? Do I need more?

• How many features do I have? Do I have too many? Do I have too few?

• Is there missing data? Should I discard the rows with missing data or handle
them differently?

• What question(s) am I trying to answer? Do I think the data collected can answer
that question?

The last bullet point is the most important question, and certainly is not easy to
answer. Thinking about these questions will help drive your analysis.

Keeping these basics in mind as we move through the book will prove helpful,
because while scikit-learn is a fairly easy tool to use, it is geared more towards those
with domain knowledge in machine learning.

Why Python?
Python has become the lingua franca for many data science applications. It combines
the powers of general purpose programming languages with the ease of use of
domain specific scripting languages like matlab or R.

Python has libraries for data loading, visualization, statistics, natural language pro‐
cessing, image processing, and more. This vast toolbox provides data scientists with a
large array of general and special purpose functionality.

As a general purpose programming language, Python also allows for the creation of
complex graphic user interfaces (GUIs), web services and for integration into existing
systems.

What this book will cover
In this book, we will focus on applying machine learning algorithms for the purpose
of solving practical problems. We will focus on how to write applications using the
machine learning library scikit-learn for the Python programming language. Impor‐

Why Python? | 13

tant aspects that we will cover include formulating tasks as machine learning prob‐
lems, preprocessing data for use in machine learning algorithms, and choosing
appropriate algorithms and algorithmic parameters.

We will focus mostly on supervised learning techniques and algorithms, as these are
often the most useful ones in practice, and they are easy for beginners to use and
understand.

We will also discuss several common types of input, including text data.

What this book will not cover
This book will not cover the mathematical details of machine learning algorithms,
and we will keep the number of formulas that we include to a minimum. In particu‐
lar, we will not assume any familiarity with linear algebra or probability theory. As
mathematics, in particular probability theory, is the foundation upon which machine
learning is build, we will not be able to go into the analysis of the algorithms in great
detail. If you are interested in the mathematics of machine learning algorithms, we
recommend the text book “Elements of Statistical Learning” by Hastie, Tibshirani and
Friedman, which is available for free at the authors website[footnote: http://stat‐
web.stanford.edu/~tibs/ElemStatLearn/]. We will also not describe how to write
machine learning algorithms from scratch, and will instead focus on how to use the
large array of models already implemented in scikit-learn and other libraries.

We will not discuss reinforcement learning, which is about an agent learning from its
interaction with an environment, and we will only briefly touch upon deep learning.

Some of the algorithms that are implemented in scikit-learn but are outside the scope
of this book include Gaussian Processes, which are complex probabilistic models, and
semi-supervised models, which work with supervised information on only some of
the samples.

We will not also explicitly talk about how to work with time-series data, although
many of techniques we discuss are applicable to this kind of data as well. Finally, we
will not discuss how to do machine learning on natural images, as this is beyond the
scope of this book.

Scikit-learn
Scikit-learn is an open-source project, meaning that scikit-learn is free to use and dis‐
tribute, and anyone can easily obtain the source code to see what is going on behind
the scenes. The scikit-learn project is constantly being developed and improved, and
has a very active user community. It contains a number of state-of-the-art machine
learning algorithms, as well as comprehensive documentation about each algorithm
on the website [footnote http://scikit-learn.org/stable/documentation]. Scikit-learn is

14 | Chapter 1: Introduction

http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://scikit-learn.org/stable/documentation

a very popular tool, and the most prominent Python library for machine learning. It
is widely used in industry and academia, and there is a wealth of tutorials and code
snippets about scikit-learn available online. Scikit-learn works well with a number of
other scientific Python tools, which we will discuss later in this chapter.

While studying the book, we recommend that you also browse the scikit-learn user
guide and API documentation for additional details, and many more options to each
algorithm. The online documentation is very thorough, and this book will provide
you with all the prerequisites in machine learning to understand it in detail.

Installing Scikit-learn
Scikit-learn depends on two other Python packages, NumPy and SciPy. For plotting
and interactive development, you should also install matplotlib, IPython and the
Jupyter notebook. We recommend using one of the following pre-packaged Python
distributions, which will provide the necessary packages:

• Anaconda (https://store.continuum.io/cshop/anaconda/): a Python distribution
made for large-scale data processing, predictive analytics, and scientific comput‐
ing. Anaconda comes with NumPy, SciPy, matplotlib, IPython, Jupyter note‐
books, and scikit-learn. Anaconda is available on Mac OS X, Windows, and
Linux.

• Enthought Canopy (https://www.enthought.com/products/canopy/): another
Python distribution for scientific computing. This comes with NumPy, SciPy,
matplotlib, and IPython, but the free version does not come with scikit-learn. If
you are part of an academic, degree-granting institution, you can request an aca‐
demic license and get free access to the paid subscription version of Enthought
Canopy. Enthought Canopy is available for Python 2.7.x, and works on Mac,
Windows, and Linux.

• Python(x,y) (https://code.google.com/p/pythonxy/): a free Python distribution for
scientific computing, specifically for Windows. Python(x,y) comes with NumPy,
SciPy, matplotlib, IPython, and scikit-learn.

If you already have a python installation set up, you can use pip to install any of these
packages.

$ pip install numpy scipy matplotlib ipython scikit-learn

We do not recommended using pip to install NumPy and SciPy on Linux, as it
involves compiling the packages from source. See the scikit-learn website for more
detailed installation.

Scikit-learn | 15

https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/
https://code.google.com/p/pythonxy/

Essential Libraries and Tools
Understanding what scikit-learn is and how to use it is important, but there are a few
other libraries that will enhance your experience. Scikit-learn is built on top of the
NumPy and SciPy scientific Python libraries. In addition to knowing about NumPy
and SciPy, we will be using Pandas and matplotlib. We will also introduce the Jupyter
Notebook, which is an browser-based interactive programming environment. Briefly,
here is what you should know about these tools in order to get the most out of scikit-
learn.

If you are unfamiliar with numpy or matplotlib, we recommend reading the first
chapter of the scipy lecture notes[footnote: http://www.scipy-lectures.org/].

Jupyter Notebook
The Jupyter Notebook is an interactive environment for running code in the browser.
It is a great tool for exploratory data analysis and is widely used by data scientists.
While Jupyter Notebook supports many programming languages, we only need the
Python support. The Jypyter Notebook makes it easy to incorporate code, text, and
images, and all of this book was in fact written as an IPython notebook.

All of the code examples we include can be downloaded from github [FIXME add git‐
hub footnote].

NumPy
NumPy is one of the fundamental packages for scientific computing in Python. It
contains functionality for multidimensional arrays, high-level mathematical func‐
tions such as linear algebra operations and the Fourier transform, and pseudo ran‐
dom number generators.

The NumPy array is the fundamental data structure in scikit-learn. Scikit-learn takes
in data in the form of NumPy arrays. Any data you’re using will have to be converted
to a NumPy array. The core functionality of NumPy is this “ndarray”, meaning it has
n dimensions, and all elements of the array must be the same type. A NumPy array
looks like this:

import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6]])
x

array([[1, 2, 3],

 [4, 5, 6]])

16 | Chapter 1: Introduction

http://www.scipy-lectures.org/

SciPy
SciPy is both a collection of functions for scientific computing in python. It provides,
among other functionality, advanced linear algebra routines, mathematical function
optimization, signal processing, special mathematical functions and statistical distri‐
butions. Scikit-learn draws from SciPy’s collection of functions for implementing its
algorithms.

The most important part of scipy for us is scipy.sparse with provides sparse matri‐
ces, which is another representation that is used for data in scikit-learn. Sparse matri‐
ces are used whenever we want to store a 2d array that contains mostly zeros:

from scipy import sparse

create a 2d numpy array with a diagonal of ones, and zeros everywhere else
eye = np.eye(4)
print("Numpy array:\n%s" % eye)

convert the numpy array to a scipy sparse matrix in CSR format
only the non-zero entries are stored
sparse_matrix = sparse.csr_matrix(eye)
print("\nScipy sparse CSR matrix:\n%s" % sparse_matrix)

Numpy array:

[[1. 0. 0. 0.]

 [0. 1. 0. 0.]

 [0. 0. 1. 0.]

 [0. 0. 0. 1.]]

Scipy sparse CSR matrix:

 (0, 0) 1.0

 (1, 1) 1.0

 (2, 2) 1.0

 (3, 3) 1.0

More details on scipy sparse matrices can be found in the scipy lecture notes.

matplotlib
Matplotlib is the primary scientific plotting library in Python. It provides function for
making publication-quality visualizations such as line charts, histograms, scatter

Scikit-learn | 17

plots, and so on. Visualizing your data and any aspects of your analysis can give you
important insights, and we will be using matplotlib for all our visualizations.

%matplotlib inline
import matplotlib.pyplot as plt

Generate a sequence of integers
x = np.arange(20)
create a second array using sinus
y = np.sin(x)
The plot function makes a line chart of one array against another
plt.plot(x, y, marker="x")

Pandas
Pandas is a Python library for data wrangling and analysis. It is built around a data
structure called DataFrame, that is modeled after the R DataFrame. Simply put, a
Pandas Pandas DataFrame is a table, similar to an Excel Spreadsheet. Pandas provides
a great range of methods to modify and operate on this table, in particular it allows
SQL-like queries and joins of tables. Another valuable tool provided by Pandas is its
ability to ingest from a great variety of file formats and databases, like SQL, Excel files
and comma separated value (CSV) files. Going into details about the functionality of
Pandas is out of the scope of this book. However, “Python for Data Analysis” by Wes
McKinney provides a great guide.

Here is a small example of creating a DataFrame using a dictionary:

18 | Chapter 1: Introduction

import pandas as pd

create a simple dataset of people
data = {'Name': ["John", "Anna", "Peter", "Linda"],
 'Location' : ["New York", "Paris", "Berlin", "London"],
 'Age' : [24, 13, 53, 33]
 }

data_pandas = pd.DataFrame(data)
data_pandas

Age Location Name

0 24 New York John

1 13 Paris Anna

2 53 Berlin Peter

3 33 London Linda

Python2 versus Python3
There are two major versions of Python that are widely used at the moment: Python2
(more precisely 2.7) and Python3 (with the latest release being 3.5 at the time of writ‐
ing), which sometimes leads to some confusion. Python2 is no longer actively devel‐
oped, but because Python3 contains major changes, Python2 code does usually not
run without changes on Python3. If you are new to Python, or are starting a new
project from scratch, we highly recommend using the latests version of Python3.

If you have a large code-base that you rely on that is written for Python2, you are
excused from upgrading for now. However, you should try to migrate to Python3 as
soon as possible. Writing any new code, it is for the most part quite easy to write code
that runs under Python2 and Python3 [Footnote: The six package can be very handy
for that].

All the code in this book is written in a way that works for both versions. However,
the exact output might differ slightly under Python2.

Versions Used in this Book
We are using the following versions of the above libraries in this book:

import pandas as pd
print("pandas version: %s" % pd.__version__)

import matplotlib
print("matplotlib version: %s" % matplotlib.__version__)

import numpy as np
print("numpy version: %s" % np.__version__)

Scikit-learn | 19

import IPython
print("IPython version: %s" % IPython.__version__)

import sklearn
print("scikit-learn version: %s" % sklearn.__version__)

pandas version: 0.17.1

matplotlib version: 1.5.1

numpy version: 1.10.4

IPython version: 4.1.2

scikit-learn version: 0.18.dev0

While it is not important to match these versions exactly, you should have a version
of scikit-learn that is as least as recent as the one we used.

Now that we have everything set up, let’s dive into our first appication of machine
learning.

A First Application: Classifying iris species
In this section, we will go through a simple machine learning application and create
our first model.

In the process, we will introduce some core concepts and nomenclature for machine
learning.

Let’s assume that a hobby botanist is interested in distinguishing what the species is of
some iris flowers that she found. She has collected some measurements associated
with the iris: the length and width of the petals, and the length and width of the sepal,
all measured in centimeters.

20 | Chapter 1: Introduction

She also has the measurements of some irises that have been previously identified by
an expert botanist as belonging to the species Setosa, Versicolor or Virginica. For
these measurements, she can be certain of which species each iris belongs to. Let’s
assume that these are the only species our hobby botanist will encounter in the wild.

Our goal is to build a machine learning model that can learn from the measurements
of these irises whose species is known, so that we can predict the species for a new
iris.

Since we have measurements for which we know the correct species of iris, this is a
supervised learning problem. In this problem, we want to predict one of several
options (the species of iris). This is an example of a classification problem. The possi‐
ble outputs (different species of irises) are called classes.

Since every iris in the dataset belongs to one of three classes this problem is a three-
class classification problem.

The desired output for a single data point (an iris) is the species of this flower. For a
particular data point, the species it belongs to is called its label.

A First Application: Classifying iris species | 21

Meet the data
The data we will use for this example is the iris dataset, a classical dataset in machine
learning an statistics.

It is included in scikit-learn in the dataset module. We can load it by calling the
load_iris function:

from sklearn.datasets import load_iris
iris = load_iris()

The iris object that is returned by load_iris is a Bunch object, which is very similar
to a dictionary. It contains keys and values:

iris.keys()

dict_keys(['DESCR', 'data', 'target_names', 'feature_names', 'target'])

The value to the key DESCR is a short description of the dataset. We show the begin‐
ning of the description here. Feel free to look up the rest yourself.

print(iris['DESCR'][:193] + "\n...")

Iris Plants Database

====================

Notes

Data Set Characteristics:

 :Number of Instances: 150 (50 in each of three classes)

 :Number of Attributes: 4 numeric, predictive att

...

The value with key target_names is an array of strings, containing the species of
flower that we want to predict:

iris['target_names']

array(['setosa', 'versicolor', 'virginica'],

 dtype='<U10')

The feature_names are a list of strings, giving the description of each feature:

iris['feature_names']

22 | Chapter 1: Introduction

['sepal length (cm)',

 'sepal width (cm)',

 'petal length (cm)',

 'petal width (cm)']

The data itself is contained in the target and data fields. The data contains the
numeric measurements of sepal length, sepal width, petal length, and petal width in a
numpy array:

type(iris['data'])

numpy.ndarray

The rows in the data array correspond to flowers, while the columns represent the
four measurements that were taken for each flower:

iris['data'].shape

(150, 4)

We see that the data contains measurements for 150 different flowers.

Remember that the individual items are called samples in machine learning, and their
properties are called features.

The shape of the data array is the number of samples times the number of features.

This is a convention in scikit-learn, and your data will always be assumed to be in this
shape.

Here are the feature values for the first five samples:

iris['data'][:5]

array([[5.1, 3.5, 1.4, 0.2],

 [4.9, 3. , 1.4, 0.2],

 [4.7, 3.2, 1.3, 0.2],

 [4.6, 3.1, 1.5, 0.2],

 [5. , 3.6, 1.4, 0.2]])

The target array contains the species of each of the flowers that were measured, also
as a numpy array:

type(iris['target'])

numpy.ndarray

The target is a one-dimensional array, with one entry per flower:

A First Application: Classifying iris species | 23

iris['target'].shape

(150,)

The species are encoded as integers from 0 to 2:

iris['target']

array([0, 0,

 0,

 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1,

 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

The meaning of the numbers are given by the iris['target_names'] array: 0 means
Setosa, 1 means Versicolor and 2 means Virginica.

Measuring Success: Training and testing data
We want to build a machine learning model from this data that can predict the spe‐
cies of iris for a new set of measurements.

Before we can apply our model to new measurements, we need to know whether our
model actually works, that is whether we should trust its predictions.

Unfortunately, we can not use the data we use to build the model to evaluate it. This is
because our model can always simply remember the whole training set, and will
therefore always predict the correct label for any point in the training set. This
“remembering” does not indicate to us whether our model will generalize well, in
other words whether it will also perform well on new data. So before we apply our
model to new measurements, we will want to know whether we can trust its predic‐
tions.

To assess the models’ performance, we show the model new data (that it hasn’t seen
before) for which we have labels. This is usually done by splitting the labeled data we
have collected (here our 150 flower measurements) into two parts.

The part of the data is used to build our machine learning model, and is called the
training data or training set. The rest of the data will be used to access how well the
model works and is called test data, test set or hold-out set.

Scikit-learn contains a function that shuffles the dataset and splits it for you, the
train_test_split function.

24 | Chapter 1: Introduction

This function extracts 75% of the rows in the data as the training set, together with
the corresponding labels for this data. The remaining 25% of the data, together with
the remaining labels are declared as the test set.

How much data you want to put into the training and the test set respectively is
somewhat arbitrary, but using a test-set containing 25% of the data is a good rule of
thumb.

In scikit-learn, data is usually denoted with a capital X, while labels are denoted by a
lower-case y.

Let’s call train_test_split on our data and assign the outputs using this nomencla‐
ture:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(iris['data'], iris['target'],
 random_state=0)

The train_test_split function shuffles the dataset using a pseudo random number
generator before making the split. If we would take the last 25% of the data as a test
set, all the data point would have the label 2, as the data points are sorted by the label
(see the output for iris['target'] above). Using a tests set containing only one of
the three classes would not tell us much about how well we generalize, so we shuffle
our data, to make sure the test data contains data from all classes.

To make sure that we will get the same output if we run the same function several
times, we provide the pseudo random number generator with a fixed seed using the
random_state parameter. This will make the outcome deterministic, so this line will
always have the same outcome. We will always fix the random_state in this way when
using randomized procedures in this book.

The output of the train_test_split function are X_train, X_test, y_train and
y_test, which are all numpy arrays. X_train contains 75% of the rows of the dataset,
and X_test contains the remaining 25%:

X_train.shape

(112, 4)

X_test.shape

(38, 4)

First things first: Look at your data
Before building a machine learning model, it is often a good idea to inspect the data,
to see if the task is easily solvable without machine learning, or if the desired infor‐
mation might not be contained in the data.

A First Application: Classifying iris species | 25

Additionally, inspecting your data is a good way to find abnormalities and peculiari‐
ties. Maybe some of your irises were measured using inches and not centimeters, for
example. In the real world, inconsistencies in the data and unexpected measurements
are very common.

One of the best ways to inspect data is to visualize it. One way to do this is by using a
scatter plot.

A scatter plot of the data puts one feature along the x-axis, one feature along the y-
axis, and draws a dot for each data point.

Unfortunately, computer screens have only two dimensions, which allows us to only
plot two (or maybe three) features at a time. It is difficult to plot datasets with more
than three features this way.

One way around this problem is to do a pair plot, which looks at all pairs of two fea‐
tures. If you have a small number of features, such as the four we have here, this is
quite reasonable. You should keep in mind that a pair plot does not show the interac‐
tion of all of features at once, so some interesting aspects of the data may not be
revealed when visualizing it this way.

Here is a pair plot of the features in the training set. The data points are colored
according to the species the iris belongs to:

fig, ax = plt.subplots(3, 3, figsize=(15, 15))
plt.suptitle("iris_pairplot")

for i in range(3):
 for j in range(3):
 ax[i, j].scatter(X_train[:, j], X_train[:, i + 1], c=y_train, s=60)
 ax[i, j].set_xticks(())
 ax[i, j].set_yticks(())
 if i == 2:
 ax[i, j].set_xlabel(iris['feature_names'][j])
 if j == 0:
 ax[i, j].set_ylabel(iris['feature_names'][i + 1])
 if j > i:
 ax[i, j].set_visible(False)

26 | Chapter 1: Introduction

From the plots, we can see that the three classes seem to be relatively well separated
using the sepal and petal measurements. This means that a machine learning model
will likely be able to learn to separate them.

Building your first model: k nearest neighbors
Now we can start building the actual machine learning model. There are many classi‐
fication algorithms in scikit-learn that we could use. Here we will use a k nearest
neighbors classifier, which is easy to understand.

A First Application: Classifying iris species | 27

Building this model only consists of storing the training set. To make a prediction for
a new data point, the algorithm finds the point in the training set that is closest to the
new point. Then, it and assigns the label of this closest data training point to the new
data point.

The k in k nearest neighbors stands for the fact that instead of using only the closest
neighbor to the new data point, we can consider any fixed number k of neighbors in
the training (for example, the closest three or five neighbors). Then, we can make a
prediction using the majority class among these neighbors. We will go into more
details about this later.

Let’s use only a single neighbor for now.

All machine learning models in scikit-learn are implemented in their own class,
which are called Estimator classes. The k nearest neighbors classification algorithm
is implemented in the KNeighborsClassifier class in the neighbors module.

Before we can use the model, we need to instantiate the class into an object. This is
when we will set any parameters of the model. The single parameter of the KNeighbor
sClassifier is the number of neighbors, which we will set to one:

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)

The knn object encapsulates the algorithm to build the model from the training data,
as well the algorithm to make predictions on new data points.

It will also hold the information the algorithm has extracted from the training data.
In the case of KNeighborsClassifier, it will just store the training set.

To build the model on the training set, we call the fit method of the knn object,
which takes as arguments the numpy array X_train containing the training data and
the numpy array y_train of the corresponding training labels:

knn.fit(X_train, y_train)

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',

 metric_params=None, n_jobs=1, n_neighbors=1, p=2,

 weights='uniform')

Making predictions
We can now make predictions using this model on new data, for which we might not
know the correct labels.

28 | Chapter 1: Introduction

Imagine we found an iris in the wild with a sepal length of 5cm, a sepal width of
2.9cm, a petal length of 1cm and a petal width of 0.2cm. What species of iris would
this be?

We can put this data into a numpy array, again with the shape number of samples
(one) times number of features (four):

X_new = np.array([[5, 2.9, 1, 0.2]])
X_new.shape

(1, 4)

To make prediction we call the predict method of the knn object:

prediction = knn.predict(X_new)
prediction

array([0])

iris['target_names'][prediction]

array(['setosa'],

 dtype='<U10')

Our model predicts that this new iris belongs to the class 0, meaning its species is
Setosa.

But how do we know whether we can trust our model? We don’t know the correct
species of this sample, which is the the whole point of building the model!

Evaluating the model
This is where the test set that we created earlier comes in. This data was not used to
build the model, but we do know what the correct species are for each iris in the test
set.

We can make a prediction for an iris in the test data, and compare it against its label
(the known species). We can measure how well the model works by computing the
accuracy, which is the fraction of flowers for which the right species was predicted:

y_pred = knn.predict(X_test)
np.mean(y_pred == y_test)

0.97368421052631582

We can also use the score method of the knn object, which will compute the test set
accuracy for us:

knn.score(X_test, y_test)

0.97368421052631582

A First Application: Classifying iris species | 29

For this model, the test set accuracy is about 0.97, which means we made the right
prediction for 97% of the irises in the test set. Under some mathematical assump‐
tions, this means that we can expect our model to be correct 97% of the time for new
irises.

For our hobby botanist application, this high level of accuracy means that our models
may be trustworthy enough to use. In later chapters we will discuss how we can
improve performance, and what caveats there are in tuning a model.

Summary
Let’s summarize what we learned in this chapter. We started off formulating a task of
predicting which species of iris a particular flower belongs to by using physical meas‐
urements of the flower. We used a dataset of measurements that was annotated by an
expert with the correct species to build our model, making this a supervised learning
task. There were three possible species, Setosa, Versicolor or Virginica, which made
the task a three-class classification problem. The possible species are called classes in
the classification problem, and the species of a single iris is called its label.

The dataset consists of two numpy arrays, one containing the data, which is referred
to as X in scikit-learn, and one containing the correct or desired outputs, which is
called y. The array X is a two-dimensional array of features, with one row per data
point, and one column per feature. The array y is a one-dimensional array, which
here contained one class label from 0 to 2 for each of the samples.

We split our dataset into a training set, to build our model, and a test set, to evaluate
how well our model will generalize to new, unseen data.

We chose the k nearest neighbors classification algorithm, which makes predictions
for a new data point by considering its closest neighbor(s) in the training set.

The algorithm is implemented in the KNeighborsClassifier class, which contains
the algorithm to build the model, as well as the algorithm to make a prediction using
the model. We instantiated the class, setting parameters. Then, we built the model by
calling the fit method, passing the training data X_train and training outputs
y_train as parameters.

We evaluated the model using the score method, that computes the accuracy of the
model. We applied the score method to the test set data and the test set labels, and
found that our model is about 97% accurate, meaning it is correct 97% of the time on
the test set.

This gave us the confidence to apply the model to new data (in our example, new
flower measurements), and trust that the model will be correct about 97% of the time.

30 | Chapter 1: Introduction

Here is a summary of the code needed for the whole training and evaluation proce‐
dure:

X_train, X_test, y_train, y_test = train_test_split(iris['data'], iris['target'],
 random_state=0)

knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)

knn.score(X_test, y_test)

0.97368421052631582

This snippet contains the core code for applying any machine learning algorithms
using scikit-learn. The fit, predict and score methods are the common interface to
supervised models in scikit-learn, and with the concepts introduced in this chapter,
you can apply these models to many machine learning tasks.

In the next chapter, we will go into more depth about the different kinds of super‐
vised models in scikit-learn, and how to apply them successfully.

A First Application: Classifying iris species | 31

	Chapter 1. Introduction
	Why machine learning?
	Problems that machine learning can solve
	Knowing your data

	Why Python?
	What this book will cover
	What this book will not cover

	Scikit-learn
	Installing Scikit-learn
	Essential Libraries and Tools
	Python2 versus Python3
	Versions Used in this Book

	A First Application: Classifying iris species
	Meet the data
	Measuring Success: Training and testing data
	First things first: Look at your data
	Building your first model: k nearest neighbors
	Making predictions
	Evaluating the model
	Summary

