
CHAPTER 7

Algorithm Chains and Pipelines

For many machine learning algorithms, the particular representation of the data that
you provide is very important, as we discussed in Chapter 5. This starts with scaling
the data and combining features by hand and goes all the way to learning features
using unsupervised machine learning as we saw in Chapter 3.

Consequently, most machine learning applications require not only the application of
a single algorithm, but the chaining together of many different processing steps and
machine learning models.

For example we noticed that we can greatly improve the performance of a kernel
SVM on the cancer dataset by using the MinMaxScaler for preprocessing. The code
for splitting the data, computing minimum and maximum, scaling the data, and
training the SVM is shown below:

from sklearn.svm import SVC
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

load and split the data
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
 cancer.data, cancer.target, random_state=0)

compute minimum and maximum on the training data
scaler = MinMaxScaler().fit(X_train)
rescale training data
X_train_scaled = scaler.transform(X_train)

svm = SVC()
learn an SVM on the scaled training data
svm.fit(X_train_scaled, y_train)

293

scale test data and score the scaled data
X_test_scaled = scaler.transform(X_test)
svm.score(X_test_scaled, y_test)

0.95104895104895104

Parameter Selection with Preprocessing
Now let’s say we want to find better parameters for SVC using GridSearchCV, as dis‐
cussed in Chapter 6.

How should we go about doing this? A naive approach might look like this:

from sklearn.model_selection import GridSearchCV
illustration purposes only, don't use this code
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100],
 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}
grid = GridSearchCV(SVC(), param_grid=param_grid, cv=5)
grid.fit(X_train_scaled, y_train)
print("best cross-validation accuracy:", grid.best_score_)
print("test set score: ", grid.score(X_test_scaled, y_test))
print("best parameters: ", grid.best_params_)

best cross-validation accuracy: 0.981220657277

test set score: 0.972027972028

best parameters: {'gamma': 1, 'C': 1}

Here, we ran the grid-search over the parameters of the SVC using the scaled data.
However, there is a subtle catch in what we just did. When scaling the data, we used
all data in the training set to find out how to train it.

We then use the scaled training data to run our grid-search using cross-validation. For
each split in the cross-validation, some part of the original training set will be
declared the training part of this split, and some the test part of the split. The test part
is used to measure how new data will look like to a model trained on the training
part. However, we already used the information contained in the test part of the split,
when scaling the data. Remember that the test part in each split in the cross-
validation is part of the training set, and we used the information from the whole train‐
ing data to find the right scaling of the data. This is fundamentally different to how new
data looks to the model. If we observe new data (say in form of our test set), this data
will not have been used to scale the training data. This data might have a different
minimum and maximum than the training data.

The illustration below shows how the data processing during cross-validation and the
final evaluation differ:

mglearn.plots.plot_improper_processing()

294 | Chapter 7: Algorithm Chains and Pipelines

So the splits in the cross-validation no longer correctly mirror how new data will look
to the modeling process. We already leaked information from these parts of the data
into our modeling process. This will lead to overly optimistic results during cross-
validation, and possibly the selection of suboptimal parameters.

To get around this problem, the splitting of the data set during cross-validation
should be done before doing any preprocessing. Any process that extracts knowledge
from the dataset should only ever be applied to the training portion of the data set, so
any cross-validation should be the “outermost loop” in your processing.

To achieve this in scikit-learn with the cross_val_score function and the Grid
SearchCV function, we can use the Pipeline class. The Pipeline class is a class that
allows “gluing” together multiple processing steps into a single scikit-learn estimator.
The Pipeline class itself has fit, predict and score methods and behaves just like
any other model in scikit-learn. The most common use-case of the pipeline class is in
chaining preprocessing steps (like scaling of the data) together with a supervised
model like a classifier.

Building Pipelines
Let’s look at how we can use the Pipeline to express the work-flow for training an
SVM after scaling the data MinMaxScaler (for now without the grid-search). First, we
build a pipeline object, by providing it with a list of steps. Each step is a tuple contain‐

Parameter Selection with Preprocessing | 295

ing a name (any string of your choosing [Footnote: With one exception: the name
may not contain a double underscore "__".]) and an instance of an estimator:

from sklearn.pipeline import Pipeline
pipe = Pipeline([("scaler", MinMaxScaler()), ("svm", SVC())])

Here, we created two steps, the first called "scaler" is a MinMaxScaler, the second,
called "svm" is an SVC. Now, we can fit the pipeline, like any other scikit-learn estima‐
tor:

pipe.fit(X_train, y_train)

Pipeline(steps=[('scaler', MinMaxScaler(copy=True, feature_range=(0, 1))), ('svm', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,

 decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',

 max_iter=-1, probability=False, random_state=None, shrinking=True,

 tol=0.001, verbose=False))])

Here, pipe.fit first calls fit on the first step, the scaler, then transforms the training
data using the scaler, and finally fits the SVM with the scaled data. To evaluate on the
test data, we simply call pipe.score:

pipe.score(X_test, y_test)

0.95104895104895104

Calling the score method on the pipeline first transforms the test data using the
scaler, and then calls the score method on the SVM using the scaled test data. As you
can see, the result is identical to the one we got from the code above, doing the trans‐
formations “by hand”.

Using the pipeline, we reduced the code needed for our “preprocessing + classifica‐
tion” process.

The main benefit of using the pipeline, however, is that we can now use this single
estimator in cross_val_score or GridSearchCV.

Using Pipelines in Grid-searches
Using a pipeline in a grid-search works the same way as using any other estimator.
We define a parameter grid to search over, and construct a GridSearchCV from the
pipeline and the parameter grid. When specifying the parameter grid, there is a slight
change, though. We need to specify for each parameter which step of the pipeline it
belongs to.

Both parameters that we want to adjust, C and gamma are parameters of SVC, the sec‐
ond step. We gave this step the name "svm". The syntax to define the a parameter grid
for a pipeline is to specify for each parameter the step name, followed by "__" (dou‐

296 | Chapter 7: Algorithm Chains and Pipelines

ble underscore), followed by the parameter name. To search over the C parameter of
the SVC we therefore have to use "svm__C" as the key in the parameter grid dictionary,
and similarly for gamma:

param_grid = {'svm__C': [0.001, 0.01, 0.1, 1, 10, 100],
 'svm__gamma': [0.001, 0.01, 0.1, 1, 10, 100]}

Using this parameter grid we can use GridSearchCV as usual:

grid = GridSearchCV(pipe, param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
print("best cross-validation accuracy:", grid.best_score_)
print("test set score: ", grid.score(X_test, y_test))
print("best parameters: ", grid.best_params_)

best cross-validation accuracy: 0.981220657277

test set score: 0.972027972028

best parameters: {'svm__C': 1, 'svm__gamma': 1}

In contrast to the grid-search we did before, now for each split in the cross-
validation, the MinMaxScaler is refit with only the training splits, not leaking any
information of the test split into the parameter search, as illustrated below. Compare
this with Figure improper_preprocessing above.

mglearn.plots.plot_proper_processing()

The impact of leaking information in the cross-validation varies depending on the
nature of the preprocessing step. Estimating the scale of the data using the test fold

Parameter Selection with Preprocessing | 297

usually doesn’t have a terrible impact, while using the test fold in feature extraction
and feature selection can lead to substantial differences in outcomes.

[FIXME info box] Illustrating information leakage

A great example of leaking information in cross-validation is given in Hastie et al.
(FIXME insert cite) and we reproduce an adapted version here.

Let us consider a synthetic regression task with 100 samples and 1000 features that
are sampled independently from a Gaussian distribution. We also sample the
response from a Gaussian distribution:

rnd = np.random.RandomState(seed=0)
X = rnd.normal(size=(100, 10000))
y = rnd.normal(size=(100,))

Given the way we created the dataset, there is no relation between the data X and the
target y (they are independent), so it should not be possible to learn anything from
this data set.

We will now do the following: First select the most informative of the ten features
using SelectPercentile feature selection, and then evaluate a Ridge regressor using
cross-validation:

from sklearn.feature_selection import SelectPercentile, f_regression

select = SelectPercentile(score_func=f_regression, percentile=5).fit(X, y)
X_selected = select.transform(X)
print(X_selected.shape)

(100, 500)

from sklearn.model_selection import cross_val_score
from sklearn.linear_model import Ridge
np.mean(cross_val_score(Ridge(), X_selected, y, cv=5))

0.90579530652398221

The mean R^2 computed by cross-validation is 0.9, indicating a very good model.
This can clearly not be right, as our data is entirely random. What happened here is
that our feature selection picked out some features among the 10000 random features
that are (by chance) very well correlated with the target. Because we fit the feature
selection outside of the cross-validation, it could find features that are correlated both
on the training and the test folds. The information we leaked from the test-folds was
very informative, leading to highly unrealistic results.

Let’s compare this to a proper cross-validation using a pipeline:

pipe = Pipeline([("select", SelectPercentile(score_func=f_regression, percentile=5)), ("ridge", Ridge())])
np.mean(cross_val_score(pipe, X, y, cv=5))

-0.24655422384952805

298 | Chapter 7: Algorithm Chains and Pipelines

This time, we get a negative R^2 score, indicating a very poor model.

Using the pipeline, the feature selection is now inside the cross-validation loop. This
means features can only be selected using the training folds of the data, not the test
fold. The feature selection finds features that are correlated with the target on the
training set. But because the data is entirely random, these features are not correlated
with the target on the test set.

In this example, rectifying the data leakage issue in the feature selection makes the
difference between concluding that a model works very well and concluding that a
model works not at all.

[end infobox]

The General Pipeline Interface
The Pipeline class is not restricted to preprocessing and classification, but can in
fact join any number of estimators together.

For example, you could build a pipeline containing feature extraction, feature selec‐
tion, scaling and classification, for a total of four steps. Similarly the last step could be
regression or clustering instead of classification.

The only requirement for estimators in a pipeline is that all but the last step need to
have a transform method, so they can produce a new representation of the data that
can be used in the next step.

Internally, during the call to Pipeline.fit, the pipeline calls first fit and then trans
form on each step in turn [Footnote: or just fit_transform], with the input given by
the output of the transform method of the previous step. For the last step in the pipe‐
line, just fit is called. Brushing over some finer details, this is implemented as fol‐
lows. Remember that pipeline.steps is a list of tuples, so pipeline.steps[0][1] is
the first estimator, pipeline.steps[1][1] is the second estimator, and so on.

def fit(self, X, y):
 X_transformed = X
 for step in self.steps[:-1]:
 # iterate over all but the final step
 # fit and transform the data
 X_transformed = step[1].fit_transform(X_transformed, y)
 # fit the last step
 self.steps[-1][1].fit(X_transformed, y)
 return self

When predicting using Pipeline, similarly we transform the data using all but the
last step, and then call predict on the last step:

def predict(self, X):
 X_transformed = X

Parameter Selection with Preprocessing | 299

 for step in self.steps[:-1]:
 # iterate over all but the final step
 # transform the data
 X_transformed = step[1].transform(X_transformed)
 # fit the last step
 return self.steps[-1][1].predict(X_transformed)

The process is illustrated below for two transformers T1 and T2 and a classifier Clf:

The pipeline is actually even more general than this. There is no requirement for the
last step in a pipeline to have a predict function, and we could create a pipeline just
containing, for example, a scaler and PCA. Then, because the last step PCA has a trans
form method, we could call transform on the pipeline to get the output of PCA.trans
form applied to the data that was processed by the previous step. The last step of a
pipeline is only required to have a fit method.

Convenient Pipeline creation with make_pipeline
Creating a Pipeline using the syntax described above is sometimes a bit cumbersome,
and we often don’t need user-specified names for each step. There is a convenience

300 | Chapter 7: Algorithm Chains and Pipelines

function make_pipeline that will create a pipeline for us and automatically name
each step based on its class. The syntax for make_pipeline is as follows:

from sklearn.pipeline import make_pipeline
standard syntax
pipe_long = Pipeline([("scaler", MinMaxScaler()), ("svm", SVC(C=100))])
abbreviated syntax
pipe_short = make_pipeline(MinMaxScaler(), SVC(C=100))

The pipeline objects pipe_long and pipe_short do exactly the same, only that
pipe_short has steps that were automatically named. We can see the name of the
steps by looking at the steps attribute:

pipe_short.steps

[('minmaxscaler', MinMaxScaler(copy=True, feature_range=(0, 1))),

 ('svc', SVC(C=100, cache_size=200, class_weight=None, coef0=0.0,

 decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',

 max_iter=-1, probability=False, random_state=None, shrinking=True,

 tol=0.001, verbose=False))]

The steps are named minmaxscaler and svc. In general the step names are just lower-
case version of the class names. If multiple steps have the same class, a number is
appended:

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

pipe = make_pipeline(StandardScaler(), PCA(n_components=2), StandardScaler())
pipe.steps

[('standardscaler-1',

 StandardScaler(copy=True, with_mean=True, with_std=True)),

 ('pca', PCA(copy=True, iterated_power=4, n_components=2, random_state=None,

 svd_solver='auto', tol=0.0, whiten=False)),

 ('standardscaler-2',

 StandardScaler(copy=True, with_mean=True, with_std=True))]

As you can see, the first StandardScaler was named "standardscaler-1" and the
second "standardscaler-2". However, in such settings it might be better to use the
Pipeline construction with explicit names, to give more semantic names to each
step.

Parameter Selection with Preprocessing | 301

Accessing step attributes
Often you might want to inspect attributes of one of the steps of the pipeline, say the
coefficients of a linear model or the components extracted by PCA. The easiest way to
access the step in a pipeline is the named_steps attribute, which is a dictionary from
step names to the estimators:

fit the pipeline defined above to the cancer dataset
pipe.fit(cancer.data)
extract the first two principal components from the "pca" step
components = pipe.named_steps["pca"].components_
print(components.shape)

/home/andy/checkout/scikit-learn/sklearn/utils/extmath.py:368: UserWarning: The number of power iterations is increased to 7 to achieve higher precision.

 warnings.warn("The number of power iterations is increased to "

Accessing attributes in grid-searched pipeline.
As we discussed above, one of the main reasons to use pipelines is for doing grid-
searches. A common task then is to access some of the steps of a pipeline inside a
grid-search.

Let’s grid-search a LogisticRegression classifier on the cancer dataset, using Pipe
line and StandardScaler to scale the data before passing it to the LogisticRegres
sion classifier.

First we create a pipeline using the make_pipeline function:

from sklearn.linear_model import LogisticRegression

pipe = make_pipeline(StandardScaler(), LogisticRegression())

Next, we create a parameter grid. The regularization parameter to tune for Logisti
cRegression is the parameter C as explained in Chapter 2. We use a logarithmic grid
for this parameter, searching between 0.01 and 100. Because we used the make_pipe
line function, the name of the LogisticRegression step in the pipeline is the lower-
cased class-name "logisticregression". To tune the parameter C, we therefore
have to specify a parameter grid for "logisticregression__C":

param_grid = {'logisticregression__C': [0.01, 0.1, 1, 10, 100]}

We split the cancer dataset into training and test set, and fit a grid-search as usual:

X_train, X_test, y_train, y_test = train_test_split(
 cancer.data, cancer.target, random_state=4)
grid = GridSearchCV(pipe, param_grid, cv=5)
grid.fit(X_train, y_train)

GridSearchCV(cv=5, error_score='raise',

 estimator=Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('logisticregression', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

302 | Chapter 7: Algorithm Chains and Pipelines

 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,

 penalty='l2', random_state=None, solver='liblinear', tol=0.0001,

 verbose=0, warm_start=False))]),

 fit_params={}, iid=True, n_jobs=1,

 param_grid={'logisticregression__C': [0.01, 0.1, 1, 10, 100]},

 pre_dispatch='2*n_jobs', refit=True, scoring=None, verbose=0)

So how do we access the coefficients of the best LogisticRegression model that was
found by GridSearchCV? From Chapter 6 we know that the best model found by Grid
SearchCV, trained on all the training data, is stored in grid.best_estimator_:

print(grid.best_estimator_)

Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('logisticregression', LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,

 penalty='l2', random_state=None, solver='liblinear', tol=0.0001,

 verbose=0, warm_start=False))])

This best_estimator_ in our case is a pipeline with two steps, "standardscaler"
and "logisticregression". To access the logisticregression step, we can use the
named_steps attribute of the pipeline that we explained above:

print(grid.best_estimator_.named_steps["logisticregression"])

LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,

 penalty='l2', random_state=None, solver='liblinear', tol=0.0001,

 verbose=0, warm_start=False)

Now that we have the trained LogisticRegression instance, we can access the coeffi‐
cients (weights) associated with each input feature:

print(grid.best_estimator_.named_steps["logisticregression"].coef_)

[[-0.389 -0.375 -0.376 -0.396 -0.115 0.017 -0.355 -0.39 -0.058 0.209

 -0.495 -0.004 -0.371 -0.383 -0.045 0.198 0.004 -0.049 0.21 0.224

 -0.547 -0.525 -0.499 -0.515 -0.393 -0.123 -0.388 -0.417 -0.325 -0.139]]

This might be a somewhat lengthy expression, but often comes in handy in under‐
standing your models.

Parameter Selection with Preprocessing | 303

Grid-searching preprocessing steps and model parameters
Using pipelines, we can encapsulate all processing steps in our machine learning
work flow in a single scikit-learn estimator. Another benefit of doing this is that we
can now adjust the parameters of the preprocessing using the outcome of a supervised
task like regression or classification.

In previous chapters, we used polynomial features on the boston dataset before
applying the ridge regressor. Let’s model that using a pipeline. The pipeline contains
three steps: scaling the data, computing polynomial features, and ridge regression:

from sklearn.datasets import load_boston
boston = load_boston()
X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=0)

from sklearn.preprocessing import PolynomialFeatures
pipe = make_pipeline(
 StandardScaler(),
 PolynomialFeatures(),
 Ridge())

But how do we know which degree of polynomials to choose, or whether to choose
any polynomials or interactions at all? Ideally we want to select the degree parameter
based on the outcome of the classification.

Using our pipeline, we can search over the degree parameter together with the
parameter alpha of Ridge. To do this, we define a param_grid that contains both,
appropriately prefixed by the step names:

param_grid = {'polynomialfeatures__degree': [1, 2, 3],
 'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100]}

Now we can run our grid-search again:

grid = GridSearchCV(pipe, param_grid=param_grid, cv=5, n_jobs=-1)
grid.fit(X_train, y_train)

GridSearchCV(cv=5, error_score='raise',

 estimator=Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('polynomialfeatures', PolynomialFeatures(degree=2, include_bias=True, interaction_only=False)), ('ridge', Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,

 normalize=False, random_state=None, solver='auto', tol=0.001))]),

 fit_params={}, iid=True, n_jobs=-1,

 param_grid={'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100], 'polynomialfeatures__degree': [1, 2, 3]},

 pre_dispatch='2*n_jobs', refit=True, scoring=None, verbose=0)

We can visualize the outcome of the cross-validation using a heatmap, as we did in
Chapter 6:

304 | Chapter 7: Algorithm Chains and Pipelines

plt.matshow(np.array([s.mean_validation_score for s in grid.grid_scores_]).reshape(3, -1),
 vmin=0, cmap="viridis")
plt.xlabel("ridge__alpha")
plt.ylabel("polynomialfeatures__degree")
plt.xticks(range(len(param_grid['ridge__alpha'])), param_grid['ridge__alpha'])
plt.yticks(range(len(param_grid['polynomialfeatures__degree'])), param_grid['polynomialfeatures__degree'])

plt.colorbar()

Looking at the results produced by the cross-validation, we can see that using polyno‐
mials of degree two helps, but that degree three polynomials are much worse than
either degree one or two.

This is reflected in the best parameters that were found:

print(grid.best_params_)

{'ridge__alpha': 10, 'polynomialfeatures__degree': 2}

Which lead to the following score:

grid.score(X_test, y_test)

0.76735803503061784

Let’s run a grid-search without polynomial features for comparison:

param_grid = {'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100]}
pipe = make_pipeline(StandardScaler(), Ridge())
grid = GridSearchCV(pipe, param_grid, cv=5)
grid.fit(X_train, y_train)
grid.score(X_test, y_test)

0.62717803817745799

Parameter Selection with Preprocessing | 305

As we had expected from the grid-search results visualized above, using no polyno‐
mial features leads to decidedly worse results. Searching over preprocessing parame‐
ters together with model parameters is a very powerful strategy. However, keep in
mind that GridSearchCV tries all possible combinations of the specified parameters.
Adding more parameters to your grid therefore increases the number of models that
need to be built exponentially.

Summary and Outlook
In this chapter we introduced the Pipeline class a general purpose tool to chain
together multiple processing steps in a machine learning work flow. Real-world appli‐
cations of machine learning are rarely an isolated use of a model, and instead a
sequence of processing steps. Using pipelines allows us to encapsulate multiple steps
into a single python object that adheres to the familiar scikit-learn interface of fit,
predict and transform.

In particular when doing model evaluation using cross-validation and parameter
selection using grid-search, using the Pipeline class to capture all processing steps is
essential for proper evaluation.

The Pipeline class also allows writing more succinct code, and reduces the likeli‐
hood of mistakes that can happen when building processing chains without the pipe‐
line class (like forgetting to apply all transformers on the test set, or maybe not
applying them in the right order).

Choosing the right combination of feature extraction, preprocessing and models is
somewhat of an art, that often requires some trial-and-error. However, using pipe‐
lines, this “trying out” of many different processing steps is quite simple. When
experimenting, be careful not to over-complicate your processes, and make sure to
evaluate whether every component your are including in your model is necessary.

With this chapter, we complete our survey of general purpose tools and algorithms
provided by scikit-learn. You now possess all the required skills and know the neces‐
sary mechanisms to apply machine learning in practice. In the next chapter, we will
dive in more detail into one particular type of data that is commonly seen in practice,
and that requires some special expertise to handle correctly: text data.

306 | Chapter 7: Algorithm Chains and Pipelines

	Chapter 7. Algorithm Chains and Pipelines
	Parameter Selection with Preprocessing
	Building Pipelines
	Using Pipelines in Grid-searches
	The General Pipeline Interface
	Convenient Pipeline creation with make_pipeline
	Grid-searching preprocessing steps and model parameters

	Summary and Outlook

